Jdi na obsah Jdi na menu
 


Vzduch

12. 9. 2009

Vzduch

Vyšší procento vodních kapiček ve vzduchu dávají vzniknout mlze

Vzduch je směs plynů tvořící plynný obal Země - atmosféru - sahající až do výše asi 1000 km. Má vliv na všechny chemické proměny jak v nerostné přírodě respektive v neživé přírodě, tak i v živých organismech. Prakticky všechny živé organismy (živá příroda) by bez kyslíku z ovzduší nemohly vůbec existovat. Má i své významné fyzikálně chemické vlastnosti, jedná se zejména o transport vody neboli koloběh vody v ovzduší. Kromě toho tepelná kapacita vzduchu udržuje na Zemi teplotu přijatelnou pro život, jinak by na noční straně naší planety byl mráz několika desítek stupňů, kdežto na denní straně by bylo více než stostupňové horko. Je také důležitou průmyslovou surovinou. Mimo jiné vzduch (resp. kyslík v něm obsažený) také slouží k oxidaci paliva ve všech běžných spalovacích motorech, k oxidaci paliva při výrobě elektrické energie v tepelných elektrárnách, dále při vytápění či ohřevu vody atd. Vzduch tedy slouží coby druhá (prakticky neviditelná) složka každého běžného fosilního paliva.

Složení vzduchu

Vzduch v nižších vrstvách je homogenní směsí těchto plynů:

plyn

objem %

hmotnost %

dusík
78,09
75,51
kyslík
20,95
23,16
argon
0,93
1,28
oxid uhličitý
0,036 (365 ppm)
0,05
neon
0,0018 (18,18 ppm)
0,0012
helium
0,000524 (5,24 ppm)
0,000072
metan
0,0002 (2 ppm)
0,0001
krypton
0,000114 (1,14 ppm)
0,0003
vodík
0,00005 (0,5 ppm)
0,000001
xenon
0,0000087 (87 ppb)
0,00004


Fyzikální vlastnosti vzduchu při 0°C a 1,01325 bar

VlastnostJednotkaRozměrHodnota
Molová hmotnostMkg/kmol28,96
Molový objemv0m3/kmol22,40
Plynová konstantaRJ/kg.K287,10
Hustotaρ0kg/m31,29
Měrná tepelná kapacita (0 °C)cpkJ/kg.K1,01
Izoentropický exponentκ=cp/cv1,40
Teplota táníTt°C-213,4
Teplota varuTv°C-194,5


Uvedené plyny jsou až na výjimky (CO2, CH4, H2) relativně stálé a jejich koncentrace se nemění. Mimo to atmosférický vzduch obsahuje proměnlivé množství vodní páry a různých jiných plynů (CO, SO2, N2O, NO, NO5 NH3, O3) a tuhé aerosoly (prach, pyl, mikroorganismy). Vodní pára a oxid uhličitý jsou dva v atmosféře nejvíce zastoupené skleníkové plyny, díky kterým je na Zemi teplota asi o 33 stupňů Celsia vyšší, než by byla bez skleníkového efektu způsobeného těmito plyny (hodnota záleží na různých odhadech a modelech).

Kapalný vzduch

Kapalný vzduch se získává tím, že se atmosférický vzduch zbaví prachu, CO2 a vlhkosti a stlačí až na 200 násobek normálního tlaku. Následně se ochladí studenou vodou a pak se nechá rozepnout do prostoru na tlak 20 až 30 násobek normálního tlaku. Tím jeho teplota silně klesne a takto ochlazeného vzduchu se použije k předchlazování dalšího vzduchu v protiproudném chladiči. Postupně se dosáhne tak nízké teploty, že vzduch zkapalní za 20 až 30 násobku běžného tlaku. Kapalný vzduch tvoří namodralou kapalinu o bodu varu -190 °C.

Průmyslově se z kapalného vzduchu destilací získává kyslík a dusík.

Stlačený vzduch

V průmyslu se stlačený vzduch používá zejména pro přenos energie pro pneumatické nástroje a zařízení. Příkladem budiž pneumatické kladivo či různé balicí stroje. Vzduch pro přenos energie je obvykle stlačen kompresorem, vysušen a doplněn olejovou mlhou.

Stlačeným vzduchem se nafukují pneumatiky, zvedací vaky, nafukovací čluny, míče, hračky.

Stlačený vzduch je dále používán při potápění a práce pod vodou, obvykle do maximání hloubky 40 m.

Vzduch také slouží k dopravě - buď přímo, např. zemědělský fukar, nebo pro přepravu schránek např. v systému potrubní pošty.

Stlačeným vzduchem lze pomocí Venturiho efektu vyrobit i podtlak, který se pak používá např. v přísavkách.

Dopravní medium

Vzduchem se pohybují všechna vozidla, hladinové lodě i všechna letadla. Vzduch v motorových letadlech s pevnými křídly letadlo nejenže pomáhá pohánět, ale nese jej i nad povrchem Země. Bezmotorová letadla (kluzáky,větroně a padáky) využívají všech vlastností vzduchu pro svůj přesně definovaný pohyb.

Vzduch klade všem dopravním prostředkům (s výjimkou kosmických lodí a ponorek) přirozený odpor, který stoupá úměrně s kvadrátem jejich rychlosti. Vozidla tento odpor překonávají zvýšeným výkonem pohonného systému (ten je opět velmi často poháněn spalováním fosilních paliv) a čelí mu konstrukčním uspořádáním resp. svými aerodynamickými tvary. Zajímavý efekt lze dobře pozorovat kupř. u kolejových vozidel v tunelech (třeba v metru), kde se vozidlo v tunelu chová jako volný píst a vzduch před sebou tlačí tunelem dopředu.

Tělesa, která se velmi rychle pohybují v atmosféře (kupř. granáty, rakety, kulky), bývají z důvodů stabilizace dráhy letu vzduchem udržována v přímém směru prostřednictvím setrvačného efektu.

 
 

 

 

Z DALŠÍCH WEBŮ

REKLAMA